Knowledge about fiber media converter that you should know

2017-10-03
Fiber media converters is an indispensable network data transmission equipment, then what is optical media converter, it has what composition, what role does it play in the data dissemination process?

Fiber media converters include three basic functional modules: optical media conversion chip, optical signal interface (optical media converter module) and electrical interface (RJ45), if equipped with network management functions, including network management information processing unit. It is an Ethernet transmission Media conversion module that converts short distance twisted-pair signals and long distance optical signals to each other and is also called a fiber converter or Ethernet media converter. It generally applies to Ethernet cables that cannot be covered, it is necessary to use optical fiber to extend the actual network environment of transmission distance, and it is usually positioned in the access layer of broadband Metropolitan Area Network, and it also plays an important role in helping to connect the last kilometre of fiber line to the metropolitan area Network.
Knowledge about fiber media converter that you should know
In some large-scale enterprises, the network construction directly using fiber for the transmission medium to establish the backbone network, and the internal LAN transmission medium is generally copper, how to achieve LAN connected with the fiber backbone network? This requires different ports, different Linear, different fiber between the conversion and to ensure the quality of the link.  The emergence of fiber-optic media converter, allows the twisted pair of electrical signals and optical signals to each other to ensure the smooth transmission of packets between the two networks while extending the network transmission distance from the copper wire from 100 meters to more than 160 kilometers (Single-mode fiber).

What are the basic features of a fiber media converter?
Fully transparent to the network protocol.
Provide ultra low delay data transmission.
Supports Ultra wide working temperature range.
Using ASIC chip to achieve data line speed forwarding. The programmable ASIC centralizes many functions on a chip, which has the advantages of simple design, high reliability, and low power consumption so that the equipment can get higher performance and lower cost.
Provide network management equipment to diagnose, upgrade, status report, abnormal Situation Report, and control function, can provide complete operation log and alarm log.
Rack-type equipment can provide hot-swappable functions for easy maintenance and uninterrupted upgrades.
Supports a variety of transmission distances (0~160 km).
The Media Converter Rack adopts the dual power supply design, supports the ultra wide power supply voltage, realizes the power protection.
What kinds of fiber media converters are available?
There is a wide range of fiber optic media converters that can be categorized in different ways.

According to the properties of an optical fiber can be divided into Multimode fiber media converter and Single-mode fiber media converter. Because of the use of different fiber, media converter can transmit the distance is not the same, Multimode fiber media converter general transmit distance between 0.5 km to 2 kilometers, and the single mode fiber media converter coverage can range from 20 km to 120 kilometers;
According to the number of optical fiber required can be divided into Single fiber (WDM) optic media converter, receiving data sent in a single strand fiber transmission; Dual Fiber optic media converter, receiving sent data on a pair of optical fiber transmission.
According to the work level/rate, can be divided into single 10M, 100M fiber media converter, 10/100M adaptive Fiber media converter, and 1000M fiber media converter.
According to the structure, can be divided into desktop (stand-alone) fiber media converter and card-type optical media converter. Stand-alone fiber media converter Suitable for a single user, such as a single switch in the corridor to meet the upper allied. Card-type (modular) optical media converter suitable for multi-user convergence, such as the central room of the community must meet all the switches in the upper allied.
According to network management can be divided into management type optical media converter and non-network management type Optical media converter.
According to the power type can be divided into: internal power optical media converter, the built-in switching power supply for the telecommunications application; external power supply Optical media converter, External transformer power is used in civilian equipment. The former advantage lies in the ability to support the ultra wide power supply voltage, to better achieve voltage regulator, filter, and equipment power protection, reduce the mechanical contact caused by external fault points; the latter has the advantage that the equipment is small and inexpensive.
Divided by the way of work: Full-duplex refers to when data is sent and received streaming, by two different transmission lines, respectively, the communication between the two sides can be sent and received at the same time operation, such a transmission is full duplex system, Full-duplex mode without the direction of the switch, therefore, there is no switching operation caused by the time delay; Half-duplex refers to the use of the same transmission line both as a receiving and sending, although the data can be transmitted in two directions, the communication between the two sides can not send and receive data, such a transmission is half duplex system. In a Half-duplex mode, the transmitter and receiver of each end of the communication system are transferred to the communication line by the receiving/sending switch, and the direction is switched, thus the time delay is generated.
These are some of the basic knowledge of optical media converter, we should have a basic understanding of fiber media converter in the application before fiber cabling to avoid any trouble.
RECENT BLOG POST
  • 01
    2019-10
    With the continuous development of 5G communication technology, 100G modules are gradually becoming popular. We know that there are many kinds of packages for 100G optical modules. From 2000 to now, the optical module package types have been rapidly developed. Its main package types are: GBIC, SFP, XENPAK, SNAP12, X2, XFP, SFP+, QSFP/QSFP+, CFP, CXP. In the fast-developing network era, some 100G optical modules avoid the risk of being eliminated, and upgraded and revised with the wave of the Internet, such as 100G CFP optical modules.
  • 01
    2019-10
    1. What is the CWDM SFP? The CWDM optical module is an optical module using CWDM technology to implement the connection between the existing network device and the CWDM multiplexer/demultiplexer. When used with a CWDM multiplexer/demultiplexer, CWDM optical modules can increase network capacity by transmitting multiple data channels with separate optical wavelengths (1270 nm to 1610 nm) on the same single fiber.
  • 01
    2019-10
    AOC is the abbreviation of Active Optical Cables, which is called Active Optical Cables in Chinese. AOC active optical is to encapsulate two optical modules and cable together. Because the medium of transmission in the middle is optical cable, AOC optical module, which contains laser devices, has a higher price for DAC. However, its optical aperture is not exposed, it has high reliability, and its working distance can be customized for a long distance of less than 100 meters.
  • 01
    2019-10
    Dense Wavelength Division Multiplexing (DWDM) technology is capable of transmitting data in an optical fiber using bit wavelength parallel transmission or string line transmission using the wavelength of the laser.It is widely used in different fields of communication networks, including long-distance backbone networks, metropolitan area networks (MANs), residential access networks, and local area networks (LANs).The DWDM optical module is the optical module that uses this technology, so the DWDM optical module has high bandwidth and long-distance transmission characteristics.